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INTEGRAL EQUATIONS OF THE PROBLEM OF THE TORSION OF AN ELASTIC BODY WITH A 
THIN DISC-LIKE INCLUSION* 

A.P. PODDUBNYAK 

Non-classical contact conditions are obtained for the axisymmetric torsion 

problem for an elastic bilayered unbounded medium containing a thin elastic 

circular inclusion of constant thickness in the connecting plane of the 

materials. The special singular integral equations of the problem are 

set up and a method for their approximate solution is described. 

The torsion of a bilayered elastic space or half-space containing 

an elastic inclusion of constant thickness 2~ in the plane separating 
the materials is examined in /l, 2/ by reducing the boundary conditions 

from the inclusion surface to the boundary separating the media (the 

middle surface of the inclusion) to the accuracy G(h*)(h-- Ha-l, where a 

is the radius of the inclusion) and solving the appropriate system of 

singular integral equations. By using an operator method and the theory 

of singular perturbations, this problem is formulated correctly below 

and its solution is given with an arbitrary number of terms retained in 

the expansion in powers of the small parameter h. 

1. Formulation of the problem. We consider an elastic medium consisting of two 

half-spaces (25 0) with the shear moduli Gland G2, whose plane of separation contains a disc- 

like elastic inclusion with shear modulus Go. We assume a concentrated torque ,bI,is applied 

at a distance so, za>H from the inclusion in the upper half-space (z > 0) on the system axis 

of symmetry. 
The equilibrium equations of a composite layer O,< p< 00, 15 1 <(h under torsion and 

Hooke's law have the form 

B;rRz -f- i&~~e + 2p?,e =0 (p= r/a,< =~/a) 

~0~ = GdLUB, T,@ = G (~3, - p-‘) Ue, Ue = a-‘~~ 

G = G (p, E) = C, (C) i- [G” - G, (;)I L’_ (I- p) x 

[U_(j+h)--+(i-h)], G,(<)=@+(Gl-GG?)Ci_(;) 

(G”, G’, G2 = const) 

(1.1) 

(1.2) 

(1.3) 

Here us, xH2,t," are the tangential displacement and the tangential stresses, G is the 

shear modulus introduced by using asymmetric unit functions C'* (x) 131, and d,,,d; are partial 

derivatives with respect to p, 5. 

We write the relationships (l.l), (1.2) in the matrix-operator form 

at/-Af tH (1.4) 

f = II fi II, A = II Ai, II, B = II Bt II (f, i = 1, 2) (1.5) 
fI -= 1.11, f2 -= THZ. A,, :; A,, = B, = 0, A,, m_ --Gal, A,, = 

K’, H, 1 --T& In G, a2 - d,* + p-Q, - (I-~ 

Solving (1.4) separately for the inclusion 151Ch,O-<p,<l and the layer outside the 

inclusion 1 5 / <h, p > 1, we obtain the following functional-operator equation after some 

reduction 

exp(- I~A")~"(L),//)-eelp(hA")f"(~,,- /I)= { e~p(-~.1") B”d& O:<p<l (1.6) 
-!, 

rxp(-_hn1)f1(p,/1)-exp(hA?)f2(p, -/1)=0, ()>I 

B,O = 11 - G, (L)/GOl z,e (1, 5) [I_' (1 - p) = R (p, Q, H,' = B12 = 0 

where it has been taken into account that f’(p, 0) = f2 (p, 0) for p > 1. Here f’q A’ (p), B’ (p, C) 
(i = 0, 1, 2) are functions and differential operators of the form (1.5) defined in the domains 
of the inclusion and the half-space. 

Since /4, 5/ 
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exp (fxAj) = cos xal f am1 sin za Aj 

ue” (p, h) = Ue’ (p, h), UeO (P, - h) = UC? (PI - h) 

&(P,h~)= &(Pl h), &(P, -h)=&(p,--) (P<i) 

where I is the unit matrix, then the following complicated boundary conditions for the problem 
of the torsion of two elastic media containing a constant-thickness disc-like inclusion in 
the connecting plane result from (1.6): 

Here 

cos ha IUI + (G&)-l sin ha (z) = g, (p) 
cos ha [rl - G,,a sin ha (U) = g, (p) (p < 1) 
co9 h. a [Ul + 6’sin ha (rn) = 0 

co9 ha It1 - a sin ha (U,,) = 0 (p > 1) 

(1.7) 

If1 = f’ (PY 4 - P (PV -4 (f) = f'(P, h) + f (PY -4 

@la) --&Tb(P, h) f -&&(P. - h) 

(&a)=G'Uel(p, h)+ G2Ue2 (p,--h) 

gr(p)= - (GOa)-' s sin jag(p,c)d< 
4 

2. Reduction of the problem of integral 
transform /6/, we represent the displacements in the 

Taking account of relationships (1.2) and using the spectral property of the Bessel 

equations. Applying the Hankel integral 
upper and lower half-spaces in the form 

Get = m~(q)e~(t+~)Jl(rlp)dq (5<8); s 
MO 

x0=8nC'a3 
0 

functions a2Jl (qp) = -q2J, (qp) as well as the corollary resulting from this property, we 
obtain a system of dual integral equations from the boundary conditions (1.7), and when we 
invert it /6-8/, we arrive at an integral equation in the column-matrix @(x)of the auxiliary 
functions 

i @ W K (2 -t)dt=h(x) (Ixl<l) (2.2) 
-1 

- 
Ql(tln)+lQz(t,h)=Z(t)-l(t+te)-e (i=1/- 1) 
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The constantcris determined from the statics conditions oftheinclusion 

'PM and % are connected by the relationships 

&LI('I)'P~('~) t xo&(rl)= i Q(t)cesrltdt 
-1 

$&z(l) (Pi 

1 
+ xoqBz (q) = q S (Dz (t) sin qt dt 

@l(5)=@)1(-x), @,(5)=;-i2y-2$ 
El (q) = e-‘ltm, Ea (d = G’Vh (W 
B,1 (q) = (- 1)” +’ Oh, &,z(q)=(- ~)“G”&I(Q) (,~=1,2) 

Taking account of the shift property of the operator /g/ 

~*ienxei*(l-r)=eirleeirl(:-l.) (D*E +jx) 

and also the definition of the Heisenberg function 6+ (y) /5/ 

The functions 

(2.3) 

where 6(y)is the Dirac function, and V.p. is the symbol of the principal value in the Cauchy 
sense (we will later omit this symbol), we obtain two identical forms of the very same singular 
integral equation from (2.2) 

L (e&) (r, (4 + $ ? Q (t) 
b(eDJ ) =dt=* (Islgl) 

--1 

No(~)+fMj ~dtfj @(t)K(t-z,e)dt= “f’ - (14 6 1) 
-1 -1 

Here (2.4) is the characteristic singular matrix equation with a given right-hand side 
(known apart from the constants b(z)) and with coefficients in the form of the hyperdiffer- 
ential operators 

Lj(FD*)= 11 L~,(eD,)~~ (n, m,i = 1, 2) (2.6) 

Llll= x1 sin eD,,, LIZ1 = xg (1 - cos eDx) 

Lz,l = f3 (1 - cos ED,), Ld = - x6 sin ED, 

LI12 = - x2 - x1 cos eDx, LIa2 = - x1 sin eD, 

Lslz = - p sin ED=, Lsl* = - x4 + x6 cos eD, 

The second form, Eq.(2.5), is a complete matrix integral Eq.(2.2) with constant coef- 
ficientsN,M and kernel K(~,E) 

(2.7) 

(n, m = 1,2) 

kl, = --xlk,, k,e = --xakr, k,, = -fikpt .& = xbk, 

kl(y,a)=-l-i n g* + 9 ’ kZ(y,+iA IT y’+c’ 

There results from the form of the operator coefficients (2.6) and the special properties 
of the elements of the matrix-kernel (2.7) 

(2.8) 

that the method of obtaining the complicated contact conditions of two elastic media in terms 
of an intermediate thin-walled inclusion by retention of a finite number of terms of the 
expansion of hyperdifferential operators in the small parameter e = 2h in relations of the 
type (1.7) is not totally correct. This is associated with the change in the type of Eq.(2.4) 
since on truncating the series the coefficients L,,L, become polynomial and the shift property 
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of the operators is lost and, with the fact that the parameter e in (2.5) can turn out to be 
large compared with the argument y = t-x in (2.7). Therefore, the assumption on the small- 
ness of the thickness of an elastic coinlike inclusion here has the nature of a singular 
perturbation and, therefore, appropriate methods /11-X3/ must here be applied to solve such 
kinds of problems. 

It should also be noted that on the basis of the Sokhotskii-Plemelj formulas /lo/, Eqs. 
(2.4) and (2.5) are equivalent to a generalized Carleman problem for a rectangle of the 
diametral section of the inclusion 

2ni Im [L(s&)@+ fz)l = h(X){ 12 / < I) c-1 
that has been studied in only certain special cases* (*Kerekesha, P.V. and Gmilio M-A., 
Investigation of the Carlemann problem for a strip with an analytic shift onward. Dep. NO. 
2543-79, VINITI, Odessa, 13-07-79, 1979) at this time /14, 15/. Here Q+(Z) is the limit Value 

of the function Q(Z) (z = z + @ +I + i0) and L is a complex matrix-operator with the elements 

L1l=-xxs-ixle~~ LIa=xz(l-ee,) 

&r= fi(1 -e,), I&-=x4 f ixsee, eE= exp(ieD,) 

3. Approximate solution of the integral equations. We consider (2.4) (or (2.5), 

(2.9)) as /16, 17/ 
P f&i,, e)@(z) = l/z&$ (Izl < 1) (3.1) 

where P(D,,e) is a pesudodifferential operator with the symbol 

P (h, e) = L, (ieh) + i sgn h L, (i&L)= P, (p) (3.2) 

PI, = i zgn MI, &, a), p, = XpAlS (1L, e) 

PPI = I& (Ir, e), P,, = i sgn hAaa (h, E) 

A,, (h, e) = -x8 - xleco, A,, (h, e) = 1 - eeo 

Aa (h, e) = - XI -+- x&‘, e,@= e-elxl, p =J./E 

Following /16/', by starting from the properties of the components A,, of the matrix P 
the solvability of (3.1) can be proved and the uniqueness of the solutions of the singular 
integral equations presented above can be established in the special class of functions E 
/16/ in the metric of Sobolev spaces H, I--1, 11: (0 (z), h (z)E H, I-1,11 (s< 0). 

We will construct the asymptotic form of the solutions as in /16/ according to which 

I(~+lml 
cU(Z)= 5 &“* x InjE[U,;,j(f)-/-1/EV,,,j(5)i_b~eZ~k,j(X)] (3.3) 

,;=(I j=O 

where & = (1 + z)/e, x = (1 - z)ie are boundary layer variables and U*,jr ~.+,j, Wk,j are second- 
order column matrices. 

We introduce the operaters H, & 

(3.4) 

where F'{ ) is the inverse Fourier transform, f* is the Fourier transform and i sgn hLa (0)~ 

lime4 P&e). Then for the zeroth approximation of the external asymptotic expansion we 
obtain the singular integral equation 

Lz(O) { yf -&=h(s) (Itl<l) (3.5) 
-1 

Constructing the residual in the zeroth approximation of the external expansion 

(3.6) 

we obtain the boundary layer functions 
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Therefore, we obtain the following Wiener-Hopf matrix integral equations 

Al?&(E) = s$o (Ef (E > 01, k4?0 (x) = e)o fx) (x > 0) (3.7) 

for the zeroth boundary layer approximations (internal asymptotic expansions). 
we find the solution of the first of them in the form 

v$)(5)= F;!.:P;:(cI) rI+p;! (~)F&.&@', (E) (f > 0) 

where Q?&(!$J is the continuation of S,,CO)(Q in the interval E,< 0, and nc is a convolution 

operator of the form /16/ 

rI-eu(p) = - & 1 o U) a 
p+iO-f 

--do 

P1+--'(p) are matrices inverse to the matrices obtained by factorization of the operator symbol 

A1 realized by using the methods developed in /18-22/. The solution of the second equation 
is found in exactly the same way from (3.7). 

Having the solutions uolO, u~,~(O), w,,~@), we again construct the residual to obtain the free 
terms of the integral Eqs.(3.5), (3.7) with respect to the subsequent approximations in (3.31, 
and we continue the iteration process in conformity with the scheme in /16, 23/ until the 
requisite accuracy is achieved. Consequently, by starting from (2.1), (2.3), (3.31, we obtain 
approximate expressions for the tangential displacements at any point of the elastic half- 
spaces, including even the boundary of contact between the inclusion and the host. We find 
appropriate tangential stresses by means of formulas of the type (1.2). The state of stress 
and strain of the elastic inclusion is determined by solving the matrix-operator Eq.cl.4) for 
0 < pQ 1, 1 C I,<h taking the stresses and displacements already known on the inclusion end- 
faces and side surfaces into account. 

The solution of problem (3.1) is simplified substantially if the matrix is homogeneous 

(B -+ O), or under the condition that the medium is bilayered but the inclusion is replaced 
by a slit or an absolutely stiff disc having a finite opening. In these cases the resolving 
equations become scalar, where the pseudodifferential (scalar) Eqs.(3.1) fall under the 
pfocedure of the solution proposed in /16/. 

The author is grateful Ya. S. Podstrigach, Yu. I. Cherskii, and Ya. I. Kunts for valuable 
remarks. 
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THE THREE-DIMENSIONAL PROBLEM OF STEADY OSCILLATIONS OF AN ELASTIC HALF-SPACE 
WITH A SPHERICAL CAVITY* 

T.G. RUMYANTSEVA,T.N. SELEZNEVA and M.G. SELEZNEV 

The three-dimensional problem of the dynamic theory of elasticity con- 
cerning steady harmonic oscillations of an elastic half-space with a 
spherical cavity is considered. The problem is reduced, with help of 
the superposition principle, to that of solving a system of six integral 
equations describing the stress-strain state of the medium. Analgorithm 
for solving the system is given, which can be used in the case when the 
cavity has a relatively small radius to obtain an approximate solution 
with any desired degree of accuracy, in the form of an asymptotic expansion. 
A numerical analysis of the stress-strain state of the elastic medium is 
given for a wide range of frequencies. 

1. Consider the problem of the forced steady harmonic oscillations of an elastic half- 
space with a deeply placed spherical cavity, in the three-dimensional formulation. The region 
occupied by the elastic medium is defined by 

z $3 0, r > Q (f(f + ?tp -I- xz + y” = tT) 

where a is the cavity radius, h is the depth of its centre, s, a, 2 are rectangular Cartesian 
coordinates and r:, a, $ are spherical coordinates attached to the cavity centre. Let 2, y, 2, 
r denote the dimensionless coordinates referred to the cavity radius a. 

The following boundary conditions are specified at the boundary of the cavity in the 
general case: ) 

zL=o, rzz = tl(5, y) e-jot, T”* = tz (z, y) e-iW’, crT, = ta (5, y) riwf (1.1) 

r = 1, a, = r1 (cq fi) e-iol, T, = TV (a, 8) c’~~, trg = TV (a, /3) e-‘@’ 

The motion of the medium is described by the dynamic equations of the theory of elasticity 
in terms of the displalements, i.e. by the Lams equations /I/. 
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